Bibliography#
C.M. Bishop. Pattern Recognition and Machine Learning. Volume 4. 2006. ISBN 9780387310732. URL: http://www.library.wisc.edu/selectedtocs/bg0137.pdf, arXiv:0-387-31073-8, doi:10.1117/1.2819119.
M.S. Chen, J. Han, and P.S. Yu. Data mining: An Overview from a Database Perspective. 1996. doi:10.1109/69.553155.
H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying and Mining of Time Series Data : Experimental Comparison of Representations and Distance Measures. Proceedings of the VLDB Endowment, 1(2):1542–1552, 2008. URL: http://dl.acm.org/citation.cfm?id=1454226, arXiv:1012.2789v1, doi:10.1145/1454159.1454226.
G. Dreyfus, J.-M. Martinez, M. Samuelides, M. B. Gordon, F. Badran, and S. Thiria. Apprentissage Apprentissage statistique. eyrolles edition, 2006. ISBN 9782212114645.
R. Duda and P. Hart. Pattern Classification and Scene Analysis. Volume 7. 1973. ISBN 0471223611. URL: http://www.jstor.org/stable/1573081?origin=crossref, doi:10.2307/1573081.
C. Frambourg, A. Douzal-Chouakria, and E. Gaussier. Learning multiple temporal matching for time series classification. In Intelligent Data Analysis, 198–209. 2013.
A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: a review. ACM Computing Surveys, 31(3):264–323, 1999. URL: http://portal.acm.org/citation.cfm?doid=331499.331504, arXiv:arXiv:1101.1881v2, doi:10.1145/331499.331504.
Jiangyuan Mei, Meizhu Liu, Yuan Fang Wang, and Huijun Gao. Learning a Mahalanobis Distance-Based Dynamic Time Warping Measure for Multivariate Time Series Classification. 2015. doi:10.1109/TCYB.2015.2426723.
P. Montero and J. Vilar. TSclust : An R Package for Time Series Clustering. Journal of Statistical Software November, 2014. URL: http://www.jstatsoft.org/v62/i01/paper.
M. Sahidullah and G. Saha. Design, analysis and experimental evaluation of block based transformation in mfcc computation for speaker recognition. Speech Communication, 54(4):543–565, 2012.
K. Weinberger and L. Saul. Distance Metric Learning for Large Margin Nearest Neighbor Classification. Journal of Machine Learning Research, 10:207–244, 2009. URL: http://www.jmlr.org/papers/volume10/weinberger09a/weinberger09a.pdf.
X. Zhu. Semi-Supervised Learning Literature Survey. Sciences-New York, pages 1–59, 2007. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.146.2352{\&}rep=rep1{\&}type=pdf, doi:10.1.1.146.2352.